IA | Tecnología

DeepMind de Google desarrolla AutoRT para mejorar comprensión de robots

Avances en la comprensión de las necesidades humanas por parte de los robots

El año 2024 promete ser un año clave para la inteligencia artificial generativa y los modelos fundamentales grandes, así como para la robótica. Hay una gran expectación en torno al potencial de diversas aplicaciones, desde el aprendizaje hasta el diseño de productos. Los investigadores de robótica de DeepMind de Google son uno de los muchos equipos que exploran el potencial de este campo. En una publicación de blog hoy, el equipo destaca la investigación en curso diseñada para dar a los robots una mejor comprensión de lo que los humanos esperamos de ellos.

Superando las limitaciones de los robots de tarea única

Tradicionalmente, los robots se han centrado en realizar una tarea singular de manera repetida a lo largo de su vida. Los robots de tarea única suelen ser muy buenos en esa única tarea, pero incluso ellos encuentran dificultades cuando se introducen cambios o errores de manera no intencionada en el proceso. Es por eso que DeepMind ha anunciado AutoRT, un sistema diseñado para aprovechar los modelos fundamentales grandes y lograr diferentes objetivos.

Mayor conciencia situacional gracias a los modelos de lenguaje visual

AutoRT utiliza un modelo de lenguaje visual (VLM) para una mejor conciencia situacional. El sistema es capaz de gestionar una flota de robots que trabajan en conjunto y están equipados con cámaras para obtener una representación de su entorno y los objetos dentro de él. Por otro lado, un modelo de lenguaje grande sugiere tareas que pueden ser realizadas por el hardware, incluyendo su efector final. Se entiende que los modelos de lenguaje grandes son clave para desbloquear la capacidad de los robots de entender comandos en lenguaje natural, reduciendo la necesidad de habilidades codificadas de manera rígida.

Pruebas exitosas y nuevos avances en el aprendizaje robótico

El sistema AutoRT ha sido probado ampliamente en los últimos siete meses. Es capaz de orquestar hasta 20 robots al mismo tiempo y un total de 52 dispositivos diferentes. En total, DeepMind ha recopilado alrededor de 77.000 pruebas, incluyendo más de 6.000 tareas. Estos resultados demuestran el potencial de AutoRT para mejorar la eficiencia y la precisión de los robots en entornos novedosos.

Otra novedad del equipo es RT-Trajectory, que utiliza vídeos como entrada para el aprendizaje robótico. Muchos equipos están explorando el uso de vídeos de YouTube como método para entrenar robots a gran escala, pero RT-Trajectory añade una capa interesante, superponiendo un boceto en dos dimensiones del brazo en acción sobre el vídeo. Estas trayectorias proporcionan pistas visuales prácticas de bajo nivel al modelo a medida que aprende sus políticas de control de robots.

Duplicando el éxito del entrenamiento y desbloqueando conocimientos

Según DeepMind, el entrenamiento con RT-Trajectory tuvo el doble de éxito que su entrenamiento con RT-2, con un 63% en comparación con el 29%, mientras se probaban 41 tareas. El equipo destaca que RT-Trajectory no solo representa un paso más en el camino hacia la construcción de robots capaces de moverse con precisión eficiente en situaciones novedosas, sino que también permite aprovechar los conocimientos de conjuntos de datos existentes.

Estos avances en la comprensión de las necesidades humanas por parte de los robots son un hito importante en el desarrollo de la robótica. La capacidad de los robots para entender y adaptarse a las demandas de los humanos abre la puerta a una amplia gama de aplicaciones en diversos campos, desde la asistencia en el hogar hasta la fabricación avanzada. Con los continuos avances en la inteligencia artificial y los modelos fundamentales grandes, es emocionante imaginar las posibilidades futuras que estos avances podrían desbloquear.


Crear Canciones Personalizadas
Publicidad


Otras noticias • IA

Liderazgo tecnológico

OpenAI proyecta 20.000 millones en ingresos para 2025

OpenAI se posiciona como líder en inteligencia artificial, proyectando ingresos anuales de 20.000 millones de dólares para 2025. Con innovaciones en dispositivos, robótica y exploración...

Lanzamiento exitoso

Sora de OpenAI arrasa en Android con 470,000 descargas

Sora, la innovadora app de creación de vídeos de OpenAI, ha tenido un lanzamiento exitoso en Android con 470,000 descargas en su primer día, superando...

Desafíos financieros

OpenAI enfrenta retos financieros en su expansión tecnológica y ética

OpenAI enfrenta desafíos financieros significativos en su expansión, con un crecimiento proyectado de 20.000 millones de dólares y una inversión de 1,4 billones en centros...

Traducciones automáticas

Kindle Translate transforma la auto-publicación con traducciones automáticas gratuitas

La llegada de Kindle Translate de Amazon promete revolucionar la auto-publicación al ofrecer traducciones automáticas gratuitas para autores. Aunque facilita el acceso a mercados internacionales,...

Aislamiento vocal

Subtle Computing revoluciona la comunicación con su aislamiento de voz

Subtle Computing, una startup californiana, ha desarrollado un innovador modelo de aislamiento de voz para entornos ruidosos, mejorando la interacción humano-máquina. Fundada por emprendedores de...

Vídeos cortos

Meta lanza Vibes en Europa tras recepción mixta en EE. UU

Vibes, la nueva plataforma de vídeos cortos generados por IA de Meta, se lanza en Europa tras una recepción mixta en EE. UU. A pesar...

Innovación tecnológica

Inception revoluciona desarrollo de software con IA y financiación millonaria

Inception, una startup de IA respaldada por figuras destacadas y con 50 millones de dólares en financiación, explora modelos de difusión para el desarrollo de...

Navegación segura

Gemini transforma Google Maps en India con navegación segura y local

La integración de Gemini en Google Maps en India busca mejorar la navegación y la seguridad vial, adaptándose a la cultura local. Incluye alertas de...