Avances en la comprensión de las necesidades humanas por parte de los robots
El año 2024 promete ser un año clave para la inteligencia artificial generativa y los modelos fundamentales grandes, así como para la robótica. Hay una gran expectación en torno al potencial de diversas aplicaciones, desde el aprendizaje hasta el diseño de productos. Los investigadores de robótica de DeepMind de Google son uno de los muchos equipos que exploran el potencial de este campo. En una publicación de blog hoy, el equipo destaca la investigación en curso diseñada para dar a los robots una mejor comprensión de lo que los humanos esperamos de ellos.
Superando las limitaciones de los robots de tarea única
Tradicionalmente, los robots se han centrado en realizar una tarea singular de manera repetida a lo largo de su vida. Los robots de tarea única suelen ser muy buenos en esa única tarea, pero incluso ellos encuentran dificultades cuando se introducen cambios o errores de manera no intencionada en el proceso. Es por eso que DeepMind ha anunciado AutoRT, un sistema diseñado para aprovechar los modelos fundamentales grandes y lograr diferentes objetivos.
Mayor conciencia situacional gracias a los modelos de lenguaje visual
AutoRT utiliza un modelo de lenguaje visual (VLM) para una mejor conciencia situacional. El sistema es capaz de gestionar una flota de robots que trabajan en conjunto y están equipados con cámaras para obtener una representación de su entorno y los objetos dentro de él. Por otro lado, un modelo de lenguaje grande sugiere tareas que pueden ser realizadas por el hardware, incluyendo su efector final. Se entiende que los modelos de lenguaje grandes son clave para desbloquear la capacidad de los robots de entender comandos en lenguaje natural, reduciendo la necesidad de habilidades codificadas de manera rígida.
Pruebas exitosas y nuevos avances en el aprendizaje robótico
El sistema AutoRT ha sido probado ampliamente en los últimos siete meses. Es capaz de orquestar hasta 20 robots al mismo tiempo y un total de 52 dispositivos diferentes. En total, DeepMind ha recopilado alrededor de 77.000 pruebas, incluyendo más de 6.000 tareas. Estos resultados demuestran el potencial de AutoRT para mejorar la eficiencia y la precisión de los robots en entornos novedosos.
Otra novedad del equipo es RT-Trajectory, que utiliza vídeos como entrada para el aprendizaje robótico. Muchos equipos están explorando el uso de vídeos de YouTube como método para entrenar robots a gran escala, pero RT-Trajectory añade una capa interesante, superponiendo un boceto en dos dimensiones del brazo en acción sobre el vídeo. Estas trayectorias proporcionan pistas visuales prácticas de bajo nivel al modelo a medida que aprende sus políticas de control de robots.
Duplicando el éxito del entrenamiento y desbloqueando conocimientos
Según DeepMind, el entrenamiento con RT-Trajectory tuvo el doble de éxito que su entrenamiento con RT-2, con un 63% en comparación con el 29%, mientras se probaban 41 tareas. El equipo destaca que RT-Trajectory no solo representa un paso más en el camino hacia la construcción de robots capaces de moverse con precisión eficiente en situaciones novedosas, sino que también permite aprovechar los conocimientos de conjuntos de datos existentes.
Estos avances en la comprensión de las necesidades humanas por parte de los robots son un hito importante en el desarrollo de la robótica. La capacidad de los robots para entender y adaptarse a las demandas de los humanos abre la puerta a una amplia gama de aplicaciones en diversos campos, desde la asistencia en el hogar hasta la fabricación avanzada. Con los continuos avances en la inteligencia artificial y los modelos fundamentales grandes, es emocionante imaginar las posibilidades futuras que estos avances podrían desbloquear.
Otras noticias • IA
Inversores estadounidenses revitalizan startups europeas tras crisis de capital
El ecosistema de startups en Europa enfrenta desafíos tras la crisis de capital riesgo, con una inversión estancada. Sin embargo, el aumento de interés de...
Waymo mejora experiencia de pasajeros con IA Gemini en vehículos
Waymo integra el asistente de IA Gemini en sus vehículos autónomos, mejorando la experiencia del pasajero. Diseñado para ser un compañero útil, Gemini gestiona funciones...
Meta debe suspender prohibición de chatbots en WhatsApp
La Autoridad de Competencia Italiana ha ordenado a Meta suspender su política que prohíbe el uso de chatbots de IA en WhatsApp, alegando abuso de...
Marissa Mayer presenta Dazzle, su nuevo asistente de IA
Marissa Mayer lanza Dazzle, su nuevo proyecto tras cerrar Sunshine, con el objetivo de desarrollar asistentes personales de inteligencia artificial. La empresa ha recaudado 8...
Lemon Slice transforma imágenes en avatares digitales interactivos
Lemon Slice, fundada en 2024, crea avatares digitales interactivos a partir de una sola imagen, utilizando su modelo Lemon Slice-2. Con 10,5 millones de dólares...
Amazon potenciará Alexa+ en 2026 con nuevos servicios integrados
Amazon ampliará las capacidades de Alexa+ en 2026, integrando servicios de Angi, Expedia, Square y Yelp. Esto permitirá a los usuarios gestionar tareas cotidianas mediante...
Alphabet compra Intersect Power por 4.750 millones de dólares
Alphabet ha adquirido Intersect Power por 4.750 millones de dólares, reforzando su posición en energías limpias y centros de datos. Este movimiento busca asegurar un...
OpenAI presenta 'Tu Año con ChatGPT' para usuarios
OpenAI ha lanzado "Tu Año con ChatGPT", una funcionalidad que ofrece a los usuarios un resumen anual personalizado de sus interacciones con el chatbot. Incluye...
Lo más reciente
- 1
Transformación eléctrica en EE. UU. impulsa innovación y sostenibilidad
- 2
Nalden presenta Boomerang, la nueva forma simple de compartir archivos
- 3
MayimFlow revoluciona la gestión del agua en centros de datos
- 4
Google Pixel Watch 4: diseño atractivo y gran rendimiento para Android
- 5
OpenAI contrata ejecutivo para abordar riesgos de inteligencia artificial
- 6
FaZe Clan enfrenta crisis tras salida de seis miembros clave
- 7
Inversores priorizan startups con visión clara y ajuste sólido

