Google presenta AlphaCode 2, un modelo de IA mejorado para la generación de código
Google ha anunciado el lanzamiento de AlphaCode 2, una versión mejorada de su modelo de generación de código AlphaCode, desarrollado por el laboratorio DeepMind de Google hace aproximadamente un año. AlphaCode 2 está impulsado por Gemini, una variante del modelo de IA generativa de Google, y ha sido afinado utilizando datos de concursos de programación. Según Google, AlphaCode 2 es mucho más capaz que su predecesor y ha demostrado un rendimiento superior en una competencia de programación.
Un rendimiento destacado en competencias de programación
En una subcategoría de competencias de programación alojadas en Codeforces, una plataforma para concursos de programación, AlphaCode 2 superó a aproximadamente el 85% de los competidores en promedio. Esto representa una mejora significativa en comparación con su predecesor, que solo superó a aproximadamente el 50% de los competidores en la misma subcategoría. AlphaCode 2 demostró su habilidad en lenguajes de programación como Python, Java, C++ y Go.
En un informe técnico sobre AlphaCode 2, se detalla que se seleccionaron 12 competencias recientes con más de 8.000 participantes, divididos en la categoría 2 o en la más difícil llamada "1+2". Esto sumó un total de 77 problemas a resolver. AlphaCode 2 resolvió el 43% de los problemas en menos de 10 intentos, lo cual es casi el doble de lo que logró el AlphaCode original (25%).
Capacidad para resolver desafíos complejos de programación
AlphaCode 2 es capaz de entender desafíos de programación que involucran matemáticas complejas y ciencia de la computación teórica. Utiliza técnicas sofisticadas, como la programación dinámica, para simplificar problemas complejos dividiéndolos en subproblemas más fáciles de resolver. Según el científico de investigación de DeepMind, Rémi Leblond, AlphaCode 2 sabe cuándo y dónde aplicar la programación dinámica. Esto es notable, considerando que la programación dinámica fue una de las dificultades principales para el AlphaCode original.
Proceso de solución de problemas de programación
AlphaCode 2 resuelve problemas utilizando una familia de "modelos de políticas" que generan múltiples muestras de código para cada problema. Las muestras de código que no se ajustan a la descripción del problema se filtran y se agrupan utilizando un algoritmo de clustering para evitar redundancias. Finalmente, un modelo de puntuación dentro de AlphaCode 2 selecciona la mejor respuesta a partir de las diez mayores agrupaciones de muestras de código.
Sin embargo, como todos los modelos de IA, AlphaCode 2 también tiene sus limitaciones. Según el informe técnico, AlphaCode 2 requiere de mucho ensayo y error, es costoso de operar a gran escala y depende en gran medida de la capacidad de filtrar muestras de código claramente incorrectas. El informe especula que migrar a una versión más capaz de Gemini, como Gemini Ultra, podría mitigar algunos de estos problemas.
Un futuro colaborativo entre programadores y modelos de IA
Aunque AlphaCode nunca fue lanzado como un producto, Eli Collins, vicepresidente de producto de DeepMind, insinuó la posibilidad de que AlphaCode 2 pueda llegar a ser utilizado por programadores en el futuro. Collins mencionó que cuando los programadores colaboran con AlphaCode 2, utilizando las propiedades adecuadas para el código, el rendimiento del modelo mejora aún más. En el futuro, se espera que los programadores utilicen modelos de IA altamente capaces como herramientas colaborativas que asistan en todo el proceso de desarrollo de software, desde la conceptualización de los problemas hasta la implementación.
Otras noticias • IA
Meta lanza Ray-Ban inteligentes que fusionan moda y tecnología
Meta ha lanzado las Ray-Ban Meta Display, gafas inteligentes que combinan estética y funcionalidad, permitiendo acceso a aplicaciones y control por gestos mediante la Meta...
Inteligencia artificial y ciberseguridad: nuevos retos y soluciones emergentes
La inteligencia artificial plantea nuevos retos en ciberseguridad, evidenciados por la financiación de 80 millones de dólares a Irregular. La empresa desarrolla marcos para detectar...
China prohíbe chips de Nvidia afectando a grandes empresas locales
La prohibición del gobierno chino a la compra de chips de Nvidia afecta a grandes empresas locales y refleja las tensiones entre Estados Unidos y...
Macroscope revoluciona la gestión de código con inteligencia artificial
Macroscope es una startup que optimiza la gestión del código para desarrolladores mediante inteligencia artificial. Fundada por Kayvon Beykpour y otros, ofrece análisis eficientes y...
Keplar revoluciona investigación de mercado con inteligencia artificial de voz
Keplar, una startup de investigación de mercado, utiliza inteligencia artificial de voz para realizar entrevistas con clientes, reduciendo costes y tiempos de obtención de datos....
Amazon presenta Seller Assistant para optimizar ventas y publicidad
Amazon ha lanzado el Seller Assistant, un asistente de IA que optimiza la gestión de ventas y publicidad para los vendedores. Este innovador sistema analiza...
Meta Connect 2025: Innovaciones en gafas y inteligencia artificial
Meta Connect 2025 promete innovaciones en gafas inteligentes, como las Hypernova, y avances en inteligencia artificial con los Meta Superintelligence Labs. La compañía busca integrar...
Gemini alcanza 12.6 millones de descargas con Nano Banana
Gemini ha experimentado un crecimiento explosivo desde el lanzamiento de su editor de imágenes Nano Banana, alcanzando 12.6 millones de descargas en septiembre. Su facilidad...
Lo más reciente
- 1
Atlassian compra DX por 1.000 millones para potenciar productividad
- 2
Camiones eléctricos avanzan en California, pero faltan estaciones de carga
- 3
Europa lidera en startups gracias a inversión en innovación
- 4
Bumble BFF relanza su plataforma para fomentar amistades auténticas
- 5
Meta revoluciona el metaverso con Hyperscape y nuevos juegos
- 6
StubHub se adapta y sale a bolsa tras adversidades
- 7
Groq recauda 750 millones y compite con Nvidia en IA