IA | Innovación

Google lanza AlphaCode 2, una IA revolucionaria para programadores

Google presenta AlphaCode 2, un modelo de IA mejorado para la generación de código

Google ha anunciado el lanzamiento de AlphaCode 2, una versión mejorada de su modelo de generación de código AlphaCode, desarrollado por el laboratorio DeepMind de Google hace aproximadamente un año. AlphaCode 2 está impulsado por Gemini, una variante del modelo de IA generativa de Google, y ha sido afinado utilizando datos de concursos de programación. Según Google, AlphaCode 2 es mucho más capaz que su predecesor y ha demostrado un rendimiento superior en una competencia de programación.

Un rendimiento destacado en competencias de programación

En una subcategoría de competencias de programación alojadas en Codeforces, una plataforma para concursos de programación, AlphaCode 2 superó a aproximadamente el 85% de los competidores en promedio. Esto representa una mejora significativa en comparación con su predecesor, que solo superó a aproximadamente el 50% de los competidores en la misma subcategoría. AlphaCode 2 demostró su habilidad en lenguajes de programación como Python, Java, C++ y Go.

En un informe técnico sobre AlphaCode 2, se detalla que se seleccionaron 12 competencias recientes con más de 8.000 participantes, divididos en la categoría 2 o en la más difícil llamada "1+2". Esto sumó un total de 77 problemas a resolver. AlphaCode 2 resolvió el 43% de los problemas en menos de 10 intentos, lo cual es casi el doble de lo que logró el AlphaCode original (25%).

Capacidad para resolver desafíos complejos de programación

AlphaCode 2 es capaz de entender desafíos de programación que involucran matemáticas complejas y ciencia de la computación teórica. Utiliza técnicas sofisticadas, como la programación dinámica, para simplificar problemas complejos dividiéndolos en subproblemas más fáciles de resolver. Según el científico de investigación de DeepMind, Rémi Leblond, AlphaCode 2 sabe cuándo y dónde aplicar la programación dinámica. Esto es notable, considerando que la programación dinámica fue una de las dificultades principales para el AlphaCode original.

Proceso de solución de problemas de programación

AlphaCode 2 resuelve problemas utilizando una familia de "modelos de políticas" que generan múltiples muestras de código para cada problema. Las muestras de código que no se ajustan a la descripción del problema se filtran y se agrupan utilizando un algoritmo de clustering para evitar redundancias. Finalmente, un modelo de puntuación dentro de AlphaCode 2 selecciona la mejor respuesta a partir de las diez mayores agrupaciones de muestras de código.

Sin embargo, como todos los modelos de IA, AlphaCode 2 también tiene sus limitaciones. Según el informe técnico, AlphaCode 2 requiere de mucho ensayo y error, es costoso de operar a gran escala y depende en gran medida de la capacidad de filtrar muestras de código claramente incorrectas. El informe especula que migrar a una versión más capaz de Gemini, como Gemini Ultra, podría mitigar algunos de estos problemas.

Un futuro colaborativo entre programadores y modelos de IA

Aunque AlphaCode nunca fue lanzado como un producto, Eli Collins, vicepresidente de producto de DeepMind, insinuó la posibilidad de que AlphaCode 2 pueda llegar a ser utilizado por programadores en el futuro. Collins mencionó que cuando los programadores colaboran con AlphaCode 2, utilizando las propiedades adecuadas para el código, el rendimiento del modelo mejora aún más. En el futuro, se espera que los programadores utilicen modelos de IA altamente capaces como herramientas colaborativas que asistan en todo el proceso de desarrollo de software, desde la conceptualización de los problemas hasta la implementación.


Podcast El Desván de las Paradojas
Publicidad


Otras noticias • IA

Vídeos creativos

Midjourney lanza V1, revolucionando vídeos y desafiando derechos de autor

Midjourney ha lanzado V1, un modelo de generación de vídeos que transforma imágenes en secuencias de cinco segundos, ampliando las posibilidades creativas. Sin embargo, enfrenta...

Colaboración finalizada

OpenAI termina colaboración con Scale AI, incertidumbre en la industria

OpenAI ha finalizado su colaboración con Scale AI, buscando proveedores de datos más especializados. Esto genera incertidumbre en la industria del etiquetado de datos, mientras...

Desalineación ética

OpenAI revela hallazgos sobre comportamientos desalineados en IA

Investigadores de OpenAI han descubierto características ocultas en modelos de IA que corresponden a comportamientos desalineados, como la toxicidad. Este hallazgo permite ajustar y redirigir...

Controversia ambiental

xAI en el ojo del huracán por turbinas sin permisos

La empresa xAI enfrenta controversia en Memphis por operar turbinas de gas natural sin permisos, lo que podría agravar la calidad del aire y la...

Interacción fluida

Google presenta "Search Live" para búsquedas interactivas y fluidas

Google ha lanzado "Search Live", una funcionalidad que permite a los usuarios interactuar con la IA de forma conversacional y fluida, facilitando la búsqueda de...

Comunidades auténticas

Digg renace con IA y recompensas para comunidades auténticas

La revitalización de Digg busca crear comunidades online auténticas, alejadas de bots y desinformación. Con una nueva aplicación en fase alpha, incorpora inteligencia artificial y...

Ética tecnológica

Desafíos éticos en la búsqueda de inteligencia artificial general

La búsqueda de la inteligencia artificial general (AGI) plantea desafíos éticos y de gobernanza. Iniciativas como "The OpenAI Files" destacan la necesidad de transparencia y...

Competencia intensa

Meta ofrece hasta 100 millones por talento en IA

Meta compite ferozmente por talento en inteligencia artificial, ofreciendo hasta 100 millones de dólares en compensación. A pesar de sus esfuerzos, OpenAI retiene a sus...